
Journal of  Statistical Physics Vol. 76. Nos. 1/2. 1994 

Microscopic Approach to the Formation 
of Liesegang Patterns 

Bastien Chopard,  I Pascal  Luthi ,  l and Miche l  D r o z  2 

Received October 8. 1993." final April I. 1994 

A microscopic approach to the formation of Liesegang patterns, based on a 
cellular automata model, is presented. This approach gives a consistent descrip- 
tion of several types of patterns observed experimentally (bands, rings, and 
spirals). Quantitative predictions are made about the generic laws Itime, 
spacing, and width laws) governing the formation of these patterns. Emphasis 
is put on the role played by the fluctuations in such nonequilibrium systems. 
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1. INTRODUCTION 

Reaction-diffusion-l ike problems have experienced in recent years a renewal 
of interest due to the deve lopment  of several new approaches ,  both  from 
the exper imental  and theoret ical  points  of view. Problems of anomalous  
kinetics, ~l'21 front formation,  ~3"a~ and Tur ing pat terns  format ion 15 71 have 
s t imulated a vast body of work. In all these problems,  a descr ipt ion in 
terms of rate (or mean-field-l ike) equat ions  is not  sufficient. It is impor tan t  
to go beyond a mean-field-l ike approach  and take the statistical fluctua- 
tions into account.  Accordingly,  first-principle analyt ical  results are scare. 
On the other  hand,  it was recently shown that  cellular au tomata- l ike  
modelsl7 91 provide a powerful numerical  tool  to study such problems.  

A very interesting class of problems concerns Liesegang pat terns  for- 
mation.  These pat terns  are produced by precipi ta t ion in the wake of  a 
moving react ion front. 
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Such a pattern formation is typically observed in a test tube containing 
a gel in which a chemical species B (for example, AgNO3) reacts with 
another species A (for example, HC1). At the beginning of the experiment, 
B is uniformly distributed in the gel with concentration bo. The other 
species A, with concentration ao is allowed to diffuse into the tube from its 
open extremity. Provided that the concentration ao is larger than b o, 
a reaction front propagates in the tube. As this A + B reaction goes on, 
formation of consecutive bands of precipitate (AgCI in our example) is 
observed in the tube (see Fig. la). 

A striking feature is that this formation process obey simple generic 
laws. After a transient time, these bands appear at some positions x~ and 
times ti and have a width we. It is first observed that the center position x,, 
of the nth band is related to the time t,, of its formation through the so- 
called time law x,, ~ x/-~,,. Second, the ratio p,, -- x n / x ,  ~ of the positions of 
two consecutive bands approaches a constant value p for large enough n. 
This last property is known as the Jablczynski law ~~ or the spacing law. 
Finally, the width w, of the the n th band is an increasing function of n. The 
presence of bands is related to the geometry of the experiment, i.e., the use 
of a test tube with axial symmetry, and most of the experiments have been 
performed in this case. However, for more complicated geometries, different 
shapes may be obtained. A well-known example is provided by the rings 
formed in agate rocks. ~lw~21 

It is well known that in the reaction-diffusion process described above 
the reaction front position Xr(t) obeys the relation x i ( t ) ~  x/~, c~3~ with an 
amplitude depending on the difference of the concentrations a and b. This 
behavior is mainly a consequence of the diffusive character of the motion 
of the particles. As the Liesegang patterns are formed in the wake of a 
moving reaction front, the time law appears to be a simple consequence of 
the diffusive dynamic. However, spacing and width laws cannot be derived 
only with reaction-diffusion hypotheses. Extra nucleation-aggregation 
mechanisms have to be introduced, which makes any analytical derivation 
quite intricate. 

The formation of Liesegang patterns has been investigated by many 
researchers, both from an experimental and a theoretical point of view. The 
models proposed so far belong to three categoriesC~4~: sol coagulation 
models, competitive particle growth models, and supersaturation models. 
So far, none of these models is able to account for all experimental obser- 
vations. For example, particular situations, called inverse banding, c~SI 
where the distance between successive rings decreases as time increases, are 
not directly explained by these models. New ingredients expressing the 
capacity of the gel to dissolve the precipitates should be introduced. 
However, we believe, following Prager, 1~61 Zeldovitch et al., tl71 Smith, 1~81 
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Dee, t~gj and Le Van and Ross, ~176 that the supersaturation mechanism 
based on Ostwald's ideas ~21~ plays a crucial role in the band formation. 

Two different scenarios can then be devised. In the most recent one, 
proposed by Dee, ~19~ the two species A and B react to produce a new 
species C which also diffuses in the gel. This C species represents a colloidal 
state which is observed in several experiments, c~sJ When the local concen- 
tration of C reaches some threshold value, nucleation occurs: the C par- 
ticles precipitate and become D particles at rest. This process is described 
by the equations 

8 ,a = D ~V2a - Rob 

8 ,c  = D,.V-'b - .Nab 

8,c  = D,.V2a + R,h -- n~ 

8 , d = n ~  

(1) 

where a, b, c, and d stand for the concentration at time t and position r of 
the A, B, C, and D species, respectively. The term R,h expresses the 
production of the C species due to the A + B reaction. Classically, a mean- 
field approximation is used for this term and R~h=kab, where k is the 
reaction constant. The quantity n,. describes the depletion of the C species 
resulting from nucleation and aggregation on existing D clusters. A precise 
expression for this quantity is quite complex and we will return to it in 
more detail later. 

From Eqs. (1), the existence of bands may be understood as follows 
(Ostwald): due to aggregation, the droplets of nucleated D particles formed 
at the reaction front deplete their surroundings of the reaction product C. 
As a result, the level of supersaturation drops dramatically and the nuclea- 
tion and solidification processes stop. After some time, the reaction front 
has moved away and the concentration of the C product at the moving 
front reaches a value large enough to allow the nucleation to occur again. 
As a result, separated bands will appear. 

However, depending on the chemical constituent A and B, it is not clear 
that whether the intermediate C species exists as an individual diffusing 
molecule. If not, another scenario has been proposed by Prager, "6J 
Zeldovitch et al., tlTI and Smith3 ~8J There, the A and B species coexist in the 
gel until the solubility product ab reaches a critical value above which 
nucleation occurs according to the reaction A + B ~ AB(solid). As nuclea- 
tion has started, a depletion of A and B occurs in the surrounding and the 
same mechanism as described above take place to produce separated 
bands. 
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Until very recently, the above two scenarios were only investigated at 
the mean-field level. The Prager-Zeldovitch model has been solved analyti- 
cally (~8) assuming the a priori existence of bands. The spacing law could be 
established from this derivation. Dee (~9) and later Le Van and Ross t2~ con- 
sidered numerical solutions of the partial differential equations governing 
the reaction-diffusion-solidification processes. The theoretical results agree 
qualitatively with the experimental ones for large initial concentration dif- 
ferences of precipitating ions and large initial degree of supersaturation. 
However, not enough bands have been obtained to provide a conclusive 
verification of the spacing law and to establish a width law. 

In a recent letter (22) we showed, in the case of a simple axial geometry, 
that both the Prager-Zeldovitch and Dee scenarios can be considered at a 
microscopic level in terms of cellular automata models. One of the main 
advantages of this approach lies in the fact that time- and space-dependent 
statistical fluctuations are included. For simple reaction-diffusion systems 
with reaction fronts, it has been shown (3) that these fluctuations are 
important for a dimension d~< d,,= 2. For aggregation mechanisms it is 
believed (23) that the statistical fluctuations play an important role for all 
dimensions. Thus, adding statistical fluctuations is an important ingredient 
to explain the properties of Liesegang-like patterns. Moreover, beyond the 
simple laws describing the patterns at the macroscopic scale, these patterns 
have a nontrivial mesoscopic structure. The Liesegang rings observed 
experimentally are not always compact, but are formed by ramified struc- 
tures, which may have some fractal properties. Our approach should allow 
us to describe not only the macroscopic properties of the patterns, but also 
the microscopic ones. 

The goal of this paper is to investigate in more detail the cellular 
automata approach we have proposed recently. (22) We show that our 
models are able to produce Liesegang bands satisfying the generic forma- 
tion laws. In addition, more general situations can be considered and we 
give results of ring and spiral structures which compare qualitatively well 
with experimental observations. We also describe various other patterns 
that are obtained when different parameters are used in the simulation. We 
introduce a qualitative phase diagram where all these patterns are repre- 
sented, with the following terminology: amorphous solidification, homo- 
geneous clustering, Liesegang patterns, and mineral dendrite. Finally, we 
propose new quantitative predictions that call for experimental verification. 

The paper is organized as follows. In Section 2, we introduce the 
cellular automata model for the situation where C particles are present. 
A lattice Boltzmann approximation of our rule is discussed to increase the 
speed of our simulations. Then the second model, without C, is introduced. 
In Section 3, the results for a system with axial symmetry (bands) are 
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reviewed and the different possible patterns emerging from the models 
represented in terms of a phase diagram. In Section 4, the case of two- 
dimensional rings and spiral formation is discussed. Finally, the importance 
of the fluctuations is discussed in Section 5. 

2. THE M I C R O S C O P I C  A P P R O A C H  

2.1. The Cel lular  A u t o m a t a  Mode l  

Cellular automata models offer a powerful approach to the description 
of many complex systems. They consists of fully discrete universes. Particles 
move on a regular lattice, simultaneously, according to discrete time steps. 
The interactions between the particles are chosen to reflect only the essen- 
tial features of the real microscopic world. 

This approach amounts to solving a many-body problem as opposed 
to mean-field-like approaches. Moreover, cellular automata models are 
tailored to be implemented on a massively parallel computer, ensuring very 
efficient simulations. 

Our model is defined on a two-dimensional square lattice. For the 
axial system (test tube), the initial conditions are the following: at time 
t = 0, the left part of the system (x ~< 0) is randomly occupied by A particles 
with a density ao and the right part (x > 0) is filled with B particles with 
a density bo, as suggested by Fig. la. 

The particles are restricted to move along the main directions of the 
lattice, according to a discrete time clock. Particles which meet at the 
same site interact or transform according to the rules of the cellular autom- 
aton. In the case where C particles are considered (Dee's model), four 
basic mechanisms are introduced in our model: (i) diffusion, (ii) reaction, 
(iii) spontaneous precipitation (nucleation), and (iv) aggregation. 

Diffusion corresponds to a simultaneous random walk of all particles 
on the lattice. ~24~ We will use four bits at each site to represent the particles 
of each diffusing species. Each of these four bits describes the absence or 
the presence of a particle of the given species traveling in one of the four 
possible directions of the lattice (up, right, down, or left). Our dynamics is 
such that it never happens that two or more particles of a given species 
enter simultaneously the same lattice site in the same direction. This fact 
(known as an exclusion principle) guarantees that four bits are enough, in 
two dimensions, to describe each species at any time. 

In absence of diffusion and reaction, the particles would simply move 
in straight lines, hopping at each time step to a neighboring site. Diffusion 

822/76/1-2-44 
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is produced as follows: at each time step, the four bits representing the con- 
figuration of particles entering at each site undergo a random permutation. 
In practice, we simply consider a random rotation (of 0, re/2, ~, or - r t /2 )  
of the lattice directions. Then the particles move to the next site of the 
lattice, according to their new velocity direction. In this way, the number 
of particles is conserved during the updating and the exclusion principle is 
always obeyed without having to deal with conflicting particle motions. 
The probabilities of each of the random rotations allow us to adjust the 
diffusion coefficient of each species. ~241 

The production of C particles takes place according to the reaction 
A + B ~  C. At the level of the cellular automata rule, this process is 
modeled as follows: when two particles of species A and B collide at a 
given site, they disappear with some given probability k and produce a C 
particle. This reaction is only possible if there is still room for this new C 
particle (the exclusion principle restricts their number to four at each site). 
If no reaction takes place, the two initial particles ignore each other and 
continue their own motion. These rules can be expressed by evolution 
equations which are defined as the microdynamics of the model. Let us call 
the four bits describing each species as a~(r, t), b,.(r, t), and c~(r, t), 
i =  1 ..... 4. The microdynamics can be divided into two steps: the reaction 
phase and the diffusive motion. We denote a;, b;, and c; the quantities just 
after the reaction phase. For the sake of simplicity, we assume that the 
A + B reaction takes place only when the A and B particles meet with 
opposite velocities: 

(1; = a i -  xiaibi+ 2(1 - ci+ ~) 

b~ = b i -  xi+ 2ai+ 2bi(1 - ci+ 3) (2) 

c~ = c i -  ~i+ 3ai+ 3bi+l(1 -- ci) 

where xi(r, t) is a random Boolean variable which is 1 with probability k. 
The diffusion phase is a random reorganization of the particles along the 
direction of motion, followed by the displacement of the particles to a 
nearest neighbor, 

3 

ai(r +e , ,  t +  1)= ~ /~a~a'i+/(r, t) (3) 
/ = 0  

where e~ are unit vectors pointing along the four main lattice directions. 
Similar equations hold for bi and ci. The quantities/al'~(r, t) are the random 
Boolean variables responsible for the random motion. ~24~ It has been 
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shown 171 that the above microdynamics [Eqs. (2) and (3)] reproduces the 
usual reaction-diffusion equations when a mean-field approximation is 
introduced. 

Nucleation and aggregation phenomena are implemented in our model 
according to general principles of supersaturation theory, but applied at a 
microscopic level. First, the C particles, once created, will diffuse until their 
local density (computed as the number of particles in a small neighborhood 
divided by its total number of sites and lattice directions) reaches a 
threshold value ksp. Then they spontaneously precipitate and become D 
particles at rest (nucleation). We have considered 3 • neighborhoods 
centered around each lattice site. Larger neighborhoods could possibly be 
envisaged, but they would have the tendency to average too much local 
density fluctuations. 

Second, the C particles located in the vicinity of precipitate D particles 
will aggregate provided that their local density is larger than an aggrega- 
tion threshold kp <k~p. Finally, a C particle sitting on the top of a D 
always becomes a D (a third threshold k could also be used here). The 
parameters kp and k~p are the two main control parameters of the model. 
The introduction of these critical values refers to the qualitative models of 
solidification theory, relating supersaturation and growth behaviorJ ~4~ 
From a microscopic point of view, it is common to describe the aggrega- 
tion process in terms of a noise reduction algorithmt25~: C particles 
aggregate on a D cluster only after several encounters. The algorithm we 
use here is slightly different, but allows us to produce a fast enough 
aggregation process compared to the speed of the reaction front. A dif- 
ference in these time scales is important for the formation of separate bands 
of precipitate. 

Liesegang patterns are only obtained for a narrow range of parameters 
and a tedious tuning is necessary to produce them. In particular, it is 
important that the initial A concentration be significantly larger than the 
initial B concentration. In a cellular automata model with an exclusion 
principle, such a large difference implies having very few B particles. As a 
consequence, the production rate of C particles is quite low because very 
few reactions take place. For this reason, we have considered a pseudo- 
three-dimensional system composed of several two-dimensional layers. The 
reaction has been implemented so that particles of different layers can 
interact. However, such an approach is very demanding as far the com- 
putation time is. concerned. Even on a massively parallel machine like an 
8192 processor Connection Machine 2, the simulation of a system of size 
512 • 64 • 64 (Fig. la) takes about 10 hr to produce ten bands. In order to 
study systems with more bands, it is desirable to have a faster numerical 
scheme. 
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2.2. The Lattice Boltzmann Model  

The outcome of a cellular automata simulation is generally very noisy, 
due to the discreteness of the state variables. Moreover, as we said, it offers 
little flexibility to adjust several parameters of the model. It may therefore 
be advantageous to simulate numerically directly the equations obtained by 
averaging and factorizing the cellular automata microdynamics. This 
implies that the many-body correlations are ignored. In this method, 
known as the lattice Boltzmann approach, t261 the Boolean variables enter- 
ing into the cellular automata rules (2) and (3) are replaced by variables 
taking a continuous value in the interval [0, 1 ]. 

However, an important ingredient of the Liesegang pattern formation 
process is that spontaneous precipitation appears as a result of intrinsic 
local density fluctuations. Indeed, in the cellular automata model, nuclea- 
tion occurs only at sites whose neighborhood contains at least k~pN 
particles. N is the product of the number of sites per neighborhood times 
the number of directions of motion (typically, for a 3 x 3 neighborhood, 
N =  32x 4). If, at a given site, the average particle density per direction is 
p, the probability that nucleation occurs is given by 

I>~kspN 
(4) 

A similar relation can be derived for the aggregation probability. Note that 
in this approach nucleation or aggregation may happen even if the average 
density is below the critical thresholds, so that the system may not be 
globally supersaturated. 

In the Boltzmann approximation, due to the averaging process, these 
stochastic aspects are lost. In order to restore the effect of the fluctuations 
given by Eq. (4), one introduces a probabilistic component for the nuclea- 
tion and aggregation processes. Nucleation and aggregation will take place 
only with given probabilities when the concentration reaches some renor- 
malized threshold ksp or kp. The determination of these probabilities, as 
well as the new values of k,p or kp, can be done so as reproduce the 
behavior of (4). 

From a qualitative point of view, the way the fluctuations are rein- 
troduced does not play a crucial role. We have observed that if the A and 
B particles are injected randomly in the system, the effect of the local 
density variations is restored. 

The lattice Boltzmann method allows us to gain a factor of 100 in the 
speed of the simulation and to produce up to 30 consecutive bands for 
systems of sizes 1024 x 64 (Fig. lb). 
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2.3. The Model  Wi thout  C Particles 

The Prager-Zeldovitch model, in which no intermediate C particles 
are included, requires different rules for the solidification processes. On the 
other hand, the diffusion rule is identical. For the sake of numerical 
efficiency, we restrict ourselves to a lattice Boltzmann modeling. 

In this scenario, the critical value k~p corresponds to the value of the 
solubility product ab above which nucleation occurs according to the 
reaction A+B-- ,AB(so l id ) .  In the vicinity of precipitate, A and B will 
aggregate if ab > kp; on the top of a precipitate particle, A and B aggregate 
provided that ab > k; k and kp are such that k < kp <ksp. Finally, the 
depletion of A and B resulting from either nucleation or aggregation lowers 
the solubility product to the stationary or equilibrium-like value ab = k. 

3. RESULTS OF THE S I M U L A T I O N  FOR THE LIESEGANG 
BANDS 

Figures la and lb show typical examples of a cellular automata 
simulation with C particles giving rise to bands. From the positions x,, and 
the formation time t,, of each band we have verified t2-'~ the spacing and the 
time laws. For instance, the plot given in Fig. 2 shows a very good agree- 

Fig. 1. (a) Formation of Liesegang bands in a test tube, as obtained from the cellular 
automata simulation of our model. The precipitate particles appear in separate bands as the 
reaction front moves from left to right. The particles produced from the A - B  reaction (light 
grey domain before ~he letter B) indicate the position of the front at the time of this snapshot 
(after 18,000 iterations). The parameters of the simulation are bo/a o = 0.01, D J D o  = Dc/Da = 
0.1, ksp/a o = 1.39 x 10 -2, and kp/a  o = 6.07 x 10 -3. (b) Formation of Liesegang bands in a test 
tube, as obtained from the lattice Boltzmann simulation of our cellular automata model with 
C particles. The parameters of the simulation are bo/ao=O.O18, D h / D o = D d D o = O . I ,  
ksp/a o = 8.7 x 10 -3, and kp/a  o = 6.5 x 10 -3. 
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Fig. 2. Verification of the spacing law for the situation shown in Fig. 1. The slope gives 
p = 1.08. 

ment  for the relat ion x , , / x , , _  i ~ P. It is found that  the so-called Jablczynski  
coefficient p is 1.08, a value well in the range of exper imental  findings. 
Indeed, the values obta ined  in different exper iments  with axial symmetr ies  
show that  t.05~<p~< 1.20. The way the value of p depends  on the 
parameters  of the model  has not  been investigated yet. 

We also have studied t221 the way the width w,, of a band  depends  on 
its posit ion.  Whereas  the time and spacing laws have been investigated in 
great  detai l  in many  experiments,  much less seems to be known abou t  a 
"width law." In most  of the experiments,  it is observed that  w,, increases 
with x,,. A l inear relat ion,  derived from the width of only a few consecutive 
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Fig. 3. Dependence of the width w, of the Liesegang bands as a function of their position 
- -  . 0 . 5 9  x,, for various values of k~p, for the concentration ratio bo/ao=O.O1. We obtain w , - x ,  , 

independently of the value of k~p. 
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Fig. 4. Lattice Boltzmann simulation leading to Liesegang band formation in the model with 
no intermediate C particles. The precipitate AB(solid) is shown dark. 

bands, has been proposed in the literature. 1~9"271 Our  simulations predict a 
more general relation 

w.~x: (5) 

where ct is an exponent which depends on the initial concentrations ao 
and bo. The width has been measured for the lattice Boltzmann simula- 
tions. It has been defined as the total spatial extension of a band. Although 
we cannot  exclude for now the value ~ = 1, we found for several simula- 
tions that ct is typically in the range 0.5--0.6. (see Fig. 3). 

The model without C particles (see Fig. 4) also exhibits the same 
features, showing that both scenarios are possible and that the interplay 
between a moving front and the rate of the precipitation-aggregation 
process is the key ingredient to the Liesegang pattern formation. 

It is experimentally well known that Liesegang patterns are only found 
if the parameters of  the experiment are thoroughly adjusted. Outside of  
the region where Liesegang patterns are formed, we have observed from 
our simulations that other types of patterns are obtained. These various 
patterns can be classified in a qualitative phase diagram, as shown in Fig. 5. 

Fig. 5. Qualitative phase diagram showing the different possible patterns that can be 
obtained with our cellular automata model, as a function of the values of ksp and kp. 
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Examples  of some of these "phases" are i l lustrated in Fig. 6. No te  that  the 
limits between the different "phases" do not  cor respond to any drast ic  
modif icat ion of the patterns.  There is ra ther  a smooth  crossover between 
the different domains .  The associated names are bor rowed from the pheno-  
menological  theory of solidification, t14' zsl 

In real experiments ,  one cannot  directly modify the parameters  kp 
and k,p. However ,  it is exper imental ly  possible to observe a crossover 
between different pat terns  by changing some proper t ies  of the gel (its pH,  

Fig. 6. Examples of patterns that are described in the phase diagram in Fig. 5. (a) Homo- 
geneous clustering; ~29~ this is also the case of pattern (b), but closer to the region of band 
formation. (c) An example of what we called a dendrite structure: TM Amorphous solidification 
would correspond to a completely uniform picture. 
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for example). These properties determine the diffusion-controlled aggrega- 
tion processes from which one controls the level of supersaturation at the 
surface of growth (kp). 

4. T W O - D I M E N S I O N A L  LIESEGANG RINGS A N D  SPIRALS 

The formation of bands of precipitate in the simulations we have 
presented so far is an effect of the symmetry of the experiment (front 
moving along the x axis). The same model can be used in other situations 
as well, provided that the suitable boundary conditions are imposed during 
the simulation. An interesting case is the formation of rings or spirals ~2~ 
obtained when the reactant A is injected in the central region of a two- 
dimensional gel initially filled with B particles (cylindrical symmetry). The 
patterns shown in Fig. 7 are results of simulations of the lattice Boltzmann 
model with C particles. The size of the lattice is 1024 • 1024. 

Figure 7a shows the situation where concentric rings of precipitate are 
formed in the wake of the reaction front. The parameters are ao = 1, 
bo/ao = 0.013, Db/D,, = 0.1, k,p/ao = 0.0087, and kp/ao = 0.0065. The nuclea- 
tion process takes place with a probability of 0.05 and aggregation with a 
probability close to 1. Similar rings are also obtained within the model 
without C particles. 

For the same set of parameters but bo/ao = 0.016, a different pattern 
occurs as shown on Fig. 7b. Here, a local defect produced by a density 
fluctuation develops and a spiral of precipitate appears instead of rings. 
Such a spiral pattern will never be obtained from a deterministic model 
which does not allows local density fluctuations. 

From our data, we have checked the validity of the spacing law for 
ring formation. The relation 

r , , / r , , _  l --, p (6) 

where r,, is the radius of the nth ring, is also observed. In Fig. 8, the 
Jablczynski coefficient p is plotted as a function of the concentration of B 
particles bo (for ao = 1) both for axial (bands) and cylindrical (rings) sym- 
metries. One notices that p decreases when bo increases, in agreement with 
experimental data. Moreover, for the same set of parameters, the value of 
p is found to be larger in the case of rings than it is for bands. This could 
be checked experimentally. 

5. C O N C L U S I O N S  

We have shown that our cellular automata approach for the formation 
of Liesegang patterns is able to reproduce many aspects experimentally 
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Fig. 7. Formation of (a) Liesegang rings and (b) spirals, as obtained after 2000 iterations of 
the lattice Boltzmann model with C particles~ 

observed. In addition, it offers new predictions and a description of the 
microscopic structure of the bands. The basic mechanisms we have incor- 
porated in the dynamics are simple and quite natural, at a microscopic 
level. The key idea is a microscopic supersaturation hypothesis. 

Fluctuations are included in the description and play a crucial role in 
the solidification process. Spontaneous precipitation (homogeneous nuclea- 
tion) and aggregation phenomena are driven by these local denisty fluctua- 
tions. The statistical variations of the number of particles in a small volume 
element produce random nucleation centers in a region where the density 
is close to the supersaturation threshold. Similarly, fluctuations make the 
situation locally favorable for aggregation to take place when the average 
density is large enough. These features are naturally taken into account in 
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Fig. 7. (Continued) 

the cellular automata approach because particles are actually present in the 
model. 

Spontaneous fluctuations are lost in the lattice Boltzmann models, due 
to the averaging process. The simple arguments of Section 2.2 show that 
local fluctuations result in nucleation and aggregation probabilities which 
are functions of the density and the saturation thresholds [see Eq. (4)]. 
The same effect can be restored in a lattice Boltzmann dynamics by also 
adding a constant probability of nucleation and aggregation when the local 
density reaches some renormalized threshold values kp and k~p. This is a 
crude but effective approximation of relation (4) (and the corresponding 
one for aggregation). The average nucleation and growth rates of our 
models follow from these probabilities and can be compared with the usual 
relations found in the literature. ~9' 2ol 

It is interesting to note that, due to the presence of these intrinsic 
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fluctuations in our models, there is no need to distinguish between what are 
usually called structures with and without initial concentration gradient/2~ 
Both follow from the same microscopic supersaturation mechanism�9 Band 
formation results from a reaction-diffusion front initiated by a macroscopic 
gradient concentration, whereas homogeneous growth takes place in direc- 
tions where no macroscopic gradient exists. 

The spontaneous fluctuations in the cellular automata description and 
the noise added in the lattice Boltzmann approach break the symmetry of 
the experiment. First, in the case of bands, one sees a structure in the direc- 
tion perpendicular to the motion of the front. This would be out of reach 
of a traditional approach. Second, in the case of rings, our models also lead 
to spirals, as observed experimentally. This is a manifestation of a large 
local fluctuation which causes a structure defect. 

An interesting extension of the present work would be to include a 
redissolution mechanism for the particles in a solid cluster. New ingredients, 
such as a variation of the diffusion coefficients, could be considered in order 
to investigate the capability of our approach to model inverse banding, as 
suggested in ref. 15. 
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